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ABSTRACT

Conditional branching in Synchronous Data Flow (SDF)
networks is a long-standing issue as it clashes with the un-
derlying synchronicity model. For this reason, conditional
update of state variables is rarely implemented in data flow
programming environments, unlike simpler selection op-
erators that do not execute code conditionally. We pro-
pose an extension to SDF theory to represent stateful con-
ditional branching. We prove the effectiveness of such ap-
proach by adding conditional constructs to the Ciaramella
programming language without compromising its modular
declarative paradigm and maintaining domain-specific op-
timizations intact. This addition enables easy implementa-
tion of common DSP algorithms and helps in writing effi-
cient complex programs.

1. INTRODUCTION

Ciaramella [1] is an high-level programming language for
coding audio DSP systems. Its declarative syntax and se-
mantics are fully compliant with the Homogeneous Syn-
chronous Data Flow (HSDF) computational model [2], yet
with a special emphasis on modularity and flexibility. This
combination allows for straightforward coding of even com-
plex DSP systems.

A source-to-source compiler called Zampogna 1 was de-
veloped in JavaScript, which parses Ciaramella code. Zam-
pogna creates an internal graph (IG) representation of the
input DSP system as a Synchronous Data Flow (SDF) model;
then, it flattens, optimizes, and statically schedules [3] the
IG; finally, it produces the corresponding C++, MATLAB,
D, or JavaScript program. In doing so, Zampogna stat-
ically schedules the SDF system, that is, it finds a fixed
computable execution (firing) order of the dataflow net-
work nodes. This implies determinism and, as a practical
consequence, efficiency of the resulting software applica-
tion, which may not be true of systems relying on dynamic
scheduling [4].

Conditional branching is a long-standing issue related to
control flow in SDF models, having direct practical con-
sequences in audio programming. In essence, every node

1 https://github.com/paolomarrone/zampogna
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in an SDF process network must always be fired so as not
to break the synchrony by unbalancing the production/con-
sumption of tokens. Token balancing prevents from selec-
tive execution of nodes, with the result that all branches
must be always executed. Operations whose outcome de-
pends on a condition are usually achieved by introducing a
selection operator, which takes all possible outcomes as in-
put and forwards the “selected” one to output based on the
input condition, in analogy with electronic multiplexers. In
such a scenario, not only all branches are always executed,
causing potentially significant performance penalties, but
also states in all branches are always updated, which makes
it cumbersome to sensibly implement common algorithms
that rely on conditionally-updated states or branches, such
as decimators and polyphase filters.

A few extensions to SDF theory have been proposed to
tackle this issue, e.g., by allowing scheduling of mixed
systems using quasi-static scheduling [5], yet increasing
complexity and at the expense of modularity. Existing
SDF programming languages, such as Lustre [6] and Sig-
nal [7], do not offer actual branching constructs but are
limited to simple select instructions. Similarly, current
audio-specific programming languages typically offer con-
structs with similar expressive power. FAUST [8] provides
selector primitives 2 while new approaches to selective ex-
ecution are being currently investigated 3 . Max 4 and its
Gen extension also limit to offering a number of select-
like operators 5 . Reaktore Core 6 supplies users with the
Router module for routing signals and controls towards
different processor blocks. In this case it is possible to con-
ditionally execute whole branches, yet the internal working
of the software is not publicly known. For example, it is
hard to tell if blocks are scheduled statically or dynami-
cally.

In this paper we propose a novel theoretical framework to
transparently handle conditionals within the HSDF model
while preserving modularity. We also extend the syntax of
Ciaramella to represent if-then-else constructs. This syntax
underpins the new theoretical solution within the HSDF
formalism. We analyse some peculiar cases and how the
compiler handles them.

2 https://faustdoc.grame.fr/manual/syntax/
#selector-primitives

3 https://github.com/orlarey/
faust-ondemand-spec

4 https://docs.cycling74.com/max8/
5 https://docs.cycling74.com/max8/vignettes/

gen_topic
6 https://www.native-instruments.com/fileadmin/

ni_media/downloads/manuals/REAKTOR_6_Building_
in_Core_English_2015_11.pdf
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The paper is organized as follows. Section 2 reminds ba-
sic concepts of SDF, recalls existing theory, and describes
our theoretical solution regarding conditionals. Section 3
illustrates the new syntax additions to Ciaramella. Section
4 describes how dynamic scheduling is avoided in certain
corner cases. Section 5 concludes the paper and suggests
possible future developments.

2. SDF-COMPATIBLE CONDITIONAL
BRANCHING

HSDF is a restriction of SDF, which in turn is a restriction
of the Kahn Process Network (KPN) distributed compu-
tation model. A KPN graph is made of a set of indepen-
dent and deterministic sequential processes (nodes) and a
set of unidirectional FIFO communication queues (edges).
A process can write/produce and/or read/consume tokens
(samples) to/from the queues. KPN requires the following
restrictions:

• writing on a queue is non-blocking;

• reading from a queue is blocking and implies token
consumption;

• a queue can be written by only one process;

• a queue can be read by only one process.

SDF requires one more rule:

• the number n of tokens that are read and written by
each process per queue and per execution is known
in advance.

In HSDF, n must be equal to 1.
SDF and, consequently, HSDF models are appealing be-

cause they allow for static scheduling [3]. Lee and Messer-
schmitt proved that an HSDF graph can always be created
by replicating the nodes of a general SDF graph [2]. This
means that HSDF is not a restriction of SDF, since what
is true for HSDF holds also for SDF. Ciaramella adopts
HSDF in order to keep simplicity without loss of general-
ity.

Conditional execution of nodes in SDF breaks the rule of
emitting/reading a constant number of tokens. Figure 1
shows how a typical if-then-else construct could be built
using two asynchronous nodes, switch and select [2].
The pair (0,1) means that the number of tokens read or
written from/to adjacent queues can be 0 or 1, which breaks
synchrony.

Otherwise, nodes switch, f(·), g(·), and select
could be wrapped in a single node to be treated as a black
box. This solution, however, breaks modularity in case a
delay is hidden within the black box and a loop from its
output to its input is established externally. Without knowl-
edge of the internals of the black box, it would be impos-
sible to establish whether a computable path exists.

Another possibility consists in executing all branches and
select the desired output via the final select while dis-
carding all others. In our example this would cause no

Figure 1: Conditional model proposed in [2]. switch and
select are asynchronous nodes implementing the classic
if-then-else statement. (0,1) means that nodes can read
or write 0 or 1 tokens per execution. This model is, there-
fore, not synchronous.

inconsistencies and conditional execution may be fully re-
stored, in theory, at a later code optimization stage. How-
ever, that would not be the case if a branch contained some
state (e.g., due to a delay operation) which would need to
be either updated or not depending on the if-then-else con-
dition.

In order to overcome such difficulties, we introduce a new
node type called conditional delay.

2.1 Conditional delay

In SDF, a unitary delay can be obtained by initializing a
queue with a token prior to the first graph execution [2].
After each graph execution that queue will always contain
one token. This is the only way an SDF system can main-
tain state between executions.

In [1] we simplified the expression of a delay by avoid-
ing queue pre-initialization and introducing a new node
type called delay1 block, see Figure 2b. A delay1
block reads from the input queue, i1, writes to the output
queue, o1, and contains the state s. Such operations are
executed in the following order:

1 write s to o1;
2 read t from i1;
3 s← t;

in which s was initialized before the first execution.
We now introduce a new node type called conditional
delay1 block. While delay1 block has one input
and one output, conditional delay1 block reads
from n+1 input queues, i1, i2, ..., in+1, writes to one out-
put queue, o1, and contains a state s. Queues i2, ...in+1

carry boolean tokens. It executes the following operations:
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Figure 2: a) classic representation of a delay over a queue.
b) analogous delay in delay1 block form. A and B are
generic SDF process nodes.

Figure 3: conditional delay1 block. A and B are
generic processor nodes; C1 and C2 write boolean tokens
on their output queues.

1 read b1, ..., bn from i2, ...in+1;
2 write s to o1;
3 read t from i1;
4 if

∧n
j=1 bj then

5 s← t;
6 else
7 discard t;
8 end

Therefore, a conditional delay1 block behaves
like delay1 block if the condition inputs are true, oth-
erwise it does not update its state s. In fact, it can be seen as
a generalization of delay1 block, to which it is equiv-
alent when n = 0.

2.2 if-then-else based on conditional delays

Our solution for stateful conditional branching is based on
the conditional delay1 block. To this aim, we
introduce the decoder and select blocks. decoder
reads tokens from an input queue and evaluates them as
boolean conditions. It sends boolean true or false to
the conditional delay1 blocks that are part of the
corresponding branches. In the example in Figure 4, if
the output of C evaluates to true then decoder sends
true to the c d1 block on the left (true) branch, and
false to the block on the right (false) branch. Further-
more, select receives the output of the condition evalu-
ation in order to forward the output from the chosen branch
and discard those from other branches. A conditional
delay1 block can depend on multiple conditional in-
puts in case of nested if-then-else constructs.

Under this scheme, all nodes in the process network are
always executed, no matter which branch they belong to.
Only the states in the selected branches will be updated

Figure 4: Conditional branching using conditional
delay1 block, switch and select. The blocks on
the light grey background belong to conditional branches

and only the proper branch outputs will be forwarded by
select nodes. The process network can thus be statically
scheduleded as usual [1, 3]. In actual implementations, it
is also possible to avoid executing entire branches in the
final output code by generating conditional constructs ev-
ery time a select is encountered during the scheduling
phase, while keeping track of dependencies.

3. EXTENDING CIARAMELLA SYNTAX AND
SEMANTICS

Ciaramella adopts a fully declarative syntax. A program
reflects the typical semantics of a HSDF graph. The pro-
gramming style is also block-oriented. A simple example
is the following implementation of a three poles low pass
filter:

1 b = 0 . 1
2 y = l p ( x ) {
3 y z1 = d e l a y 1 ( y )
4 y = y z1 + b * ( x − y z1 )
5 @y = 0
6 }
7
8 yL , yR = l p 3 ( x ) {
9 yL = l p ( l p ( l p ( x ) ) )

10 yR = yL
11 }

lp and lp3 are called composite blocks since they are
themselves composed of other blocks. Line 9 contains
three instantiations of lp. Composite block instances are
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flattened during compilation, meaning that no set of blocks
is ever treated as a black box.

3.1 Nested and Anonymous composite blocks

In order to keep the syntax flexible and coherent, the newly-
introduced conditional branching syntax is based on other
two additions, namely nested composite block definitions
and anonymous composite block instantiations.

In the following code example,

1 y1 , y2 = B1 ( x ) {
2 m = 0 . 5
3 t = B2 ( z ) {
4 t = z * m
5 }
6 y = {
7 y = B2 ( x )
8 }
9 y1 = y

10 y2 = −y
11 }

B2 is a nested composite block that is visible only within
B1. Scoping is hierarchical, so that code contained at an
inner scope can reference variables and blocks defined in
outer scopes: in the example, m is accessible within B2.
At lines 6-8 an anonymous composite block is defined and
instantiated at the same time. It has no name and no ex-
plicit inputs since it cannot be instantiated elsewhere. As a
design choice, we opted for a full name masking strategy,
meaning that identifiers (of both variables and blocks) in
inner scopes shadow outer ones.

3.2 if-then-else

We introduced a syntax for conditional branching that is
coherent with the declarative and modular nature of the
language:

1 var1 , var2 , va r3 = i f ( c o n d i t i o n ) {
2 # anonymous b l o c k
3 # e x e c u t e d i f c o n d i t i o n i s t r u e
4 # var1 , var2 , va r3 must be a s s i g n e d
5 } e l s e {
6 # anonymous b l o c k
7 # e x e c u t e d i f c o n d i t i o n i s f a l s e
8 # var1 , var2 , va r3 must be a s s i g n e d
9 }

In practice, each branch is implemented by instantiating
an anonymous composite block. Please notice that it is
not possible to define one branch only since variables, e.g.,
var1, var2, var3, must always be defined and the
declarative nature of the language makes it impossible to
define them elsewhere.

Perhaps the simplest use case for conditional branching
is a 2x decimator. Here is an example implementation:

1 y = d e c i m a t o r ( x ) {
2 y , s = i f ( d e l a y 1 ( s ) ) {
3 y = x
4 s = 0

5 } e l s e {
6 y = d e l a y 1 ( t )
7 s = 1
8 }
9 t = y

10 @s = 1
11 @y = 0
12 }

This turns a generic input sequence

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

into
x1, x1, x3, x3, x5, x5, x7, x7, x9, x9.

Here, s is used to hold the iteration state and y and s get
updated differently according to the previous value of s.
Note that, due to name masking, variable t is necessary to
refer to the outer y: if line 6 were y = delay1(y), then
y on the right-side of the assignment would have referred
to the internal-to-the-branch y and the block would gener-
ate an output sequence like x1, y0, x3, y0, x5, y0, x7, y0, x9,
where the initial value y0 would have to be defined within
the branch.

Indeed, it is possible to implement delays that are fully
contained within a branch. As an example, consider the
following naı̈ve sawtooth generator:

1 y = s a w g e n e r a t o r ( enab l e , f r e q u e n c y ) {
2 y = i f ( e n a b l e ) {
3 p h a s e I n c = f r e q u e n c y / f s
4 phase = f r a c ( d e l a y 1 ( phase ) + p h a s e I n c )
5 @phase = 0
6 y = 2 * phase − 1
7 } e l s e {
8 y = 0
9 }

10 }

Here, phase is updated only when enable is true.

3.3 New semantics and SDF

decoder, switch and conditional delay blocks
do not explicitly appear in Ciaramella syntax, they are rather
implicitly inferred and added to the IG as needed by the
compiler. For example, figure 5 shows the SDF graph
corresponding to the decimator example. It is impor-
tant to note that there are 1 decoder (DEC) and 2 selects
(SEL), and the same output from DEC is routed towards
both SELs. This originates from y and s being dependent
on the same condition.

The scheduler checks whether delay-free loops are present
in all potential execution paths and refuses to proceed if
one is found. Since scheduling is performed after flatten-
ing, this arrangement fully preserves the modularity of the
language.

4. DYNAMIC TO STATIC SCHEDULING

Let us consider, as a mere proof of concept, the following
code:
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Figure 5: SDF graph corresponding to the decimator
example

1 y1 = t e s t ( x ) {
2 y1 , y2 = i f ( x > 0 . 5 ) {
3 y1 = d e l a y 1 ( t 1 )
4 y2 = t 2
5 } e l s e {
6 y1 = t 1
7 y2 = d e l a y 1 ( t 2 )
8 }
9 t 1 = y2 + x

10 t 2 = y1
11 @t1 = 0
12 @t2 = 0
13 }

By analysing both cases independently, it is possible to
verify that the program does not contain delay-free loops
and is always computable, yet no single scheduling order
can be found that works in both cases. Indeed, when x >
0.5 we end up having t1 instantaneously depend on t2
and viceversa otherwise.

More generally, such inversions of dependencies may arise
in presence of an if-then-else block B when the following
conditions are met:

1. B has multiple outputs (depending on the same con-
dition);

2. there are one or more loops between the outputs and
the inputs of B;

3. the same outputs of B rely on different inputs de-
pending on the branch.

We have devised a strategy to avoid dynamic schedul-
ing [4] in such scenarios. Zampogna discovers parts of
the program meeting the conditions above and performs if-
then-else normalization: the blocks outside the if-then-else
block that are involved in loops get replicated and moved
inside the branches, thus making such loops internal to
each branch of B and invalidating condition 2. The fol-
lowing code contains the text representation of the graph
resulting from if-then-else normalization in our example:

1 y1 = t e s t ( x ) {
2 y1 , y2 , t1 , t 2 = i f ( x > 0 . 5 ) {
3 y1 = d e l a y 1 ( t 1 )
4 y2 = t 2
5 t 1 = y2 + x
6 t 2 = y1
7 } e l s e {
8 y1 = t 1

9 y2 = d e l a y 1 ( t 2 )
10 t 1 = y2 + x
11 t 2 = y1
12 }
13 t 1 = t 1
14 t 2 = t 2
15 @t1 = 0
16 @t2 = 0
17 }

t1 = y2 + x and t2 = y1 have been replicated and
moved inside branches. According to scoping rules, y1
and y2 on the right-side of assignments do not refer any-
more to the output of the implicitly-added select blocks,
but rather to their inputs. t1 and t2 became if-then-else
outputs and new intermediate variables (t1 and t2 ) are
added in order to keep scoping consistent. The resulting
graph can be statically scheduled.

Moreover, this approach facilitates certain optimizations.
Indeed, as parts of code are moved and replicated inside
branches, the purely dataflow portion of the whole program
tendentially increases, which simplifies data-flow analysis
and SSA-based optimizations in modern compilers. On
the other hand, the code size may increase, thus potentially
affecting cache locality.

5. CONCLUSIONS

We addressed the problem of stateful conditional branch-
ing in SDF theory by proposing a simple addition which
keeps the model flexible and coherent. Consequently, the
Ciaramella DSP programming language has been augmented
to support if-then-else constructs without compromising its
fully declarative nature and its modularity. The Zampogna
compiler can now handle such new features by transpar-
ently representing Ciaramella programs as SDF graphs and
performing adequate scheduling and optimization.

The ambition of Ciaramella is to be capable of repre-
senting the largest class of audio DSP algorithms possible
meeting the needs of both industry and amateurs. Introduc-
tion of conditional branching is an important step toward
this goal, as it allows to both easily code new components,
e.g. decimators and polyphase filters, and write optimized
algorithms. Further research may be directed towards ex-
tending the proposed approach to implement ternary con-
ditional operator for simple cases, elseif and switch con-
structs, as well as conditional loops. For the language to
be feature complete, primitives like arrays, matrices, multi-
rate support and n-delays are fundamental and they are still
to be implemented.
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